The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity.

نویسندگان

  • Arsalan Daudi
  • Zhenyu Cheng
  • Jose A O'Brien
  • Nicole Mammarella
  • Safina Khan
  • Frederick M Ausubel
  • G Paul Bolwell
چکیده

In plants, reactive oxygen species (ROS) associated with the response to pathogen attack are generated by NADPH oxidases or apoplastic peroxidases. Antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase (FBP1) cDNA in Arabidopsis thaliana was previously shown to diminish the expression of two Arabidopsis peroxidases (peroxidase 33 [PRX33] and PRX34), block the oxidative burst in response to a fungal elicitor, and cause enhanced susceptibility to a broad range of fungal and bacterial pathogens. Here we show that mature leaves of T-DNA insertion lines with diminished expression of PRX33 and PRX34 exhibit reduced ROS and callose deposition in response to microbe-associated molecular patterns (MAMPs), including the synthetic peptides Flg22 and Elf26 corresponding to bacterial flagellin and elongation factor Tu, respectively. PRX33 and PRX34 knockdown lines also exhibited diminished activation of Flg22-activated genes after Flg22 treatment. These MAMP-activated genes were also downregulated in unchallenged leaves of the peroxidase knockdown lines, suggesting that a low level of apoplastic ROS production may be required to preprime basal resistance. Finally, the PRX33 knockdown line is more susceptible to Pseudomonas syringae than wild-type plants. In aggregate, these data demonstrate that the peroxidase-dependent oxidative burst plays an important role in Arabidopsis basal resistance mediated by the recognition of MAMPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity.

Reactive oxygen species (ROS) are potent signal molecules rapidly generated in response to stress. Detection of pathogen-associated molecular patterns induces a transient apoplastic ROS through the function of the NADPH respiratory burst oxidase homologs D (RbohD). However, little is known about the regulation of pathogen-associated molecular pattern-elicited ROS or its role in plant immunity. ...

متن کامل

A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense.

Perception by plants of so-called microbe-associated molecular patterns (MAMPs) such as bacterial flagellin, referred to as pattern-triggered immunity, triggers a rapid transient accumulation of reactive oxygen species (ROS). We previously identified two cell wall peroxidases, PRX33 and PRX34, involved in apoplastic hydrogen peroxide (H2O2) production in Arabidopsis (Arabidopsis thaliana). Here...

متن کامل

Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance.

The oxidative burst is an early response to pathogen attack leading to the production of reactive oxygen species (ROS) including hydrogen peroxide. Two major mechanisms involving either NADPH oxidases or peroxidases that may exist singly or in combination in different plant species have been proposed for the generation of ROS. We identified an Arabidopsis thaliana azide-sensitive but diphenylen...

متن کامل

Aquaporins Link ROS Signaling to Plant Immunity.

One of the most rapid defense reactions of plants to pathogen attack is the so-called oxidative burst, which constitutes the production of reactive oxygen species (ROS) at the site of an attempted invasion. In general, the oxidative burst is induced by the perception of typical microbial nonplant molecules, so-called microbeassociated molecular patterns (MAMPs; Bigeard et al., 2015). Well-known...

متن کامل

Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance.

The present understanding of ROS generation in the defence response of Arabidopsis thaliana is reviewed. Evidence suggests that the apoplastic oxidative burst generated during basal resistance is peroxidase-dependent. The ROS generated during this basal resistance may serve to activate NADPH oxidase during the R-gene-mediated hypersensitive response. The processes involved in the production of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2012